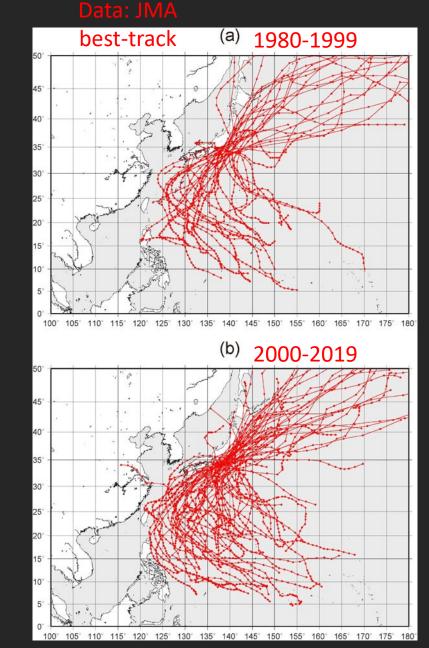

Seeing the unseen: Climate change from space

Presenter: Arthur Ho Wang, LI (M2, Imasu lab) Supervisor: Prof. Ryoichi, IMASU

NENV Symposium 2023/10/31

Climate change basics

• Weather

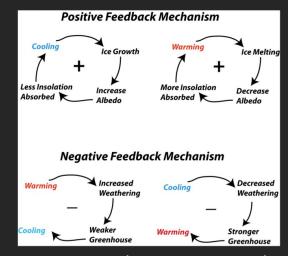

The transient state of the atmosphere over short period

• Climate

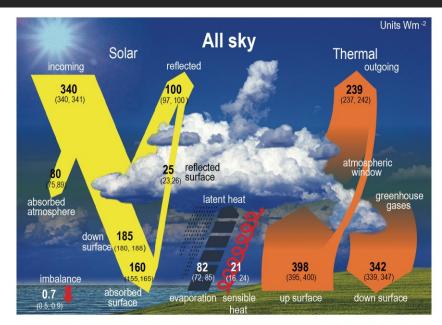
- The statistical description of relevant properties of the atmosphere over long period (30-year average by IPCC)
- Temperature, humidity, precipitation, cloud, pressure, wind

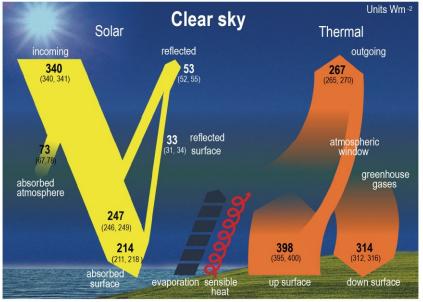
• Extreme events

• Magnitude, frequency



(Yamaguchi & Maeda, 2020)


Climate change basics


• Energy balance

- Energy from the sun, escape to space
- Climate is a highly complex system
 - Atmosphere, hydrosphere, cryosphere, lithosphere, biosphere
- Feedback mechanism
 - The interactions

(Source: NASA)

(Source: IPCC AR6)

Energy balance in simple math...

• Energy is balanced by I/O:

Input = output

• Input is solely from the sun, which is constant, and reflected (α_p) :

$$Input = \frac{S_0}{4} (1 - \alpha_p)$$

• Earth absorbs energy becoming "warm", thus emits IR (Stefan-Boltzman's law):

$$Output = \sigma T^4$$

• Then, we balance the I/O:

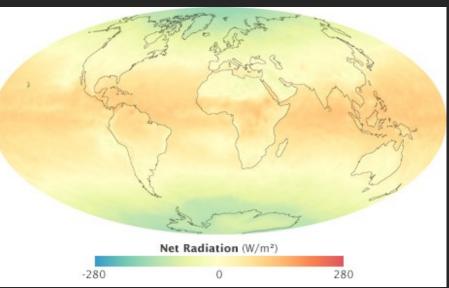
$$\frac{S_0}{4} \left(1 - \alpha_p \right) = \sigma T^4$$

Energy balance in simple math...

• Given S_0 =1367 W m⁻², α_p =0.3, we rearrange the equation:

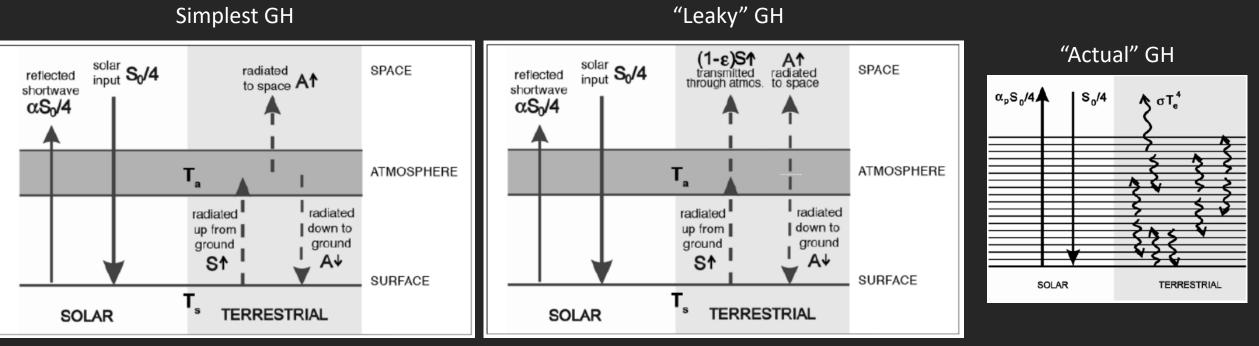
$$T = \left[\frac{S_0(1-\alpha_p)}{4\sigma}\right]^2$$

 \sim

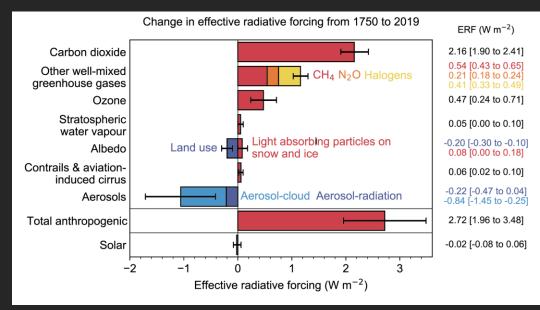

Z D D Λ

(Source: NASA)

• But in reality, global mean surface T is 15 C (288 K)!


	<i>r</i> 10 ⁹ m	S_0 W m ⁻²	α_p	T _e K	T _m K	T_s K	auEarth days
Venus	108	2632	0.77	227	230	760	243
Earth	150	1367	0.30	255	250	288	1.00
Mars	228	589	0.24	211	220	230	1.03
Jupiter	780	51	0.51	103	130	134	0.41

John and Plumb (2007)


The actors of climate change: GHGs

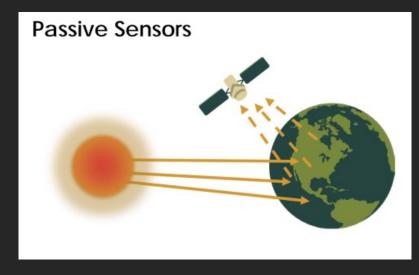
- The atmosphere: a thin film of fluid on the Earth
 - A mixture of permanent gases (O₂ and N₂) and minor compositions (CO₂ etc)
 - Greenhouse effect

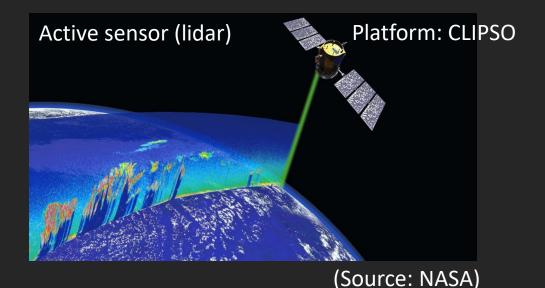
Why SLCFs Matter

- Short-lived climate forcers: Black carbon, O₃, CH₄, Helogens
 - Short-lived and higher global warming potential (GWP)
 - CO₂ formation
- Well...because they are short-lived
 - Mitigation of climate change -> quick response

Fun fact: CO_2 is stable, and it is the final product of reactions. Easy to form, hard to deform.

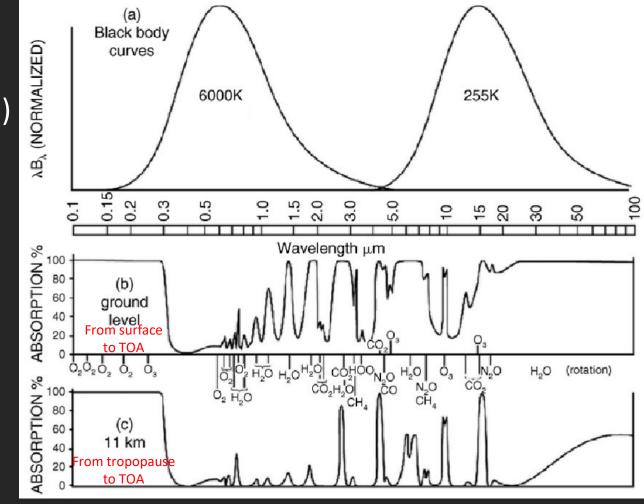
 $\begin{array}{c} \mathsf{CH}_4 + \mathsf{OH} \xrightarrow{} \mathsf{CH}_3 + \mathsf{H}_2\mathsf{O} \\\\ \mathsf{CH}_3 + \mathsf{O}_2 + \mathsf{M} \xrightarrow{} \mathsf{CH}_3\mathsf{O}_2 + \mathsf{M} \\\\ \mathsf{CH}_3\mathsf{O}_2 + \mathsf{HO}_2 \xrightarrow{} \mathsf{CH}_3\mathsf{OOH} + \mathsf{O}_2 \\\\ \mathsf{CH}_3\mathsf{OOH} + \mathsf{OH} \xrightarrow{} \mathsf{CH}_2\mathsf{O} + \mathsf{OH} + \mathsf{H}_2\mathsf{O} \end{array}$


 $\begin{array}{c} \mathsf{CH}_2\mathsf{O} + \mathsf{OH} \rightarrow \mathsf{CHO} + \mathsf{H}_2\mathsf{O} \\ \mathsf{CH}_2\mathsf{O} + \mathsf{hv} \rightarrow \mathsf{CHO} + \mathsf{HO}_2 \\ \mathsf{CH}_2\mathsf{O} + \mathsf{hv} \rightarrow \mathsf{CO} + \mathsf{H}_2 \\ \mathsf{CHO} + \mathsf{O}_2 \rightarrow \mathsf{CO} + \mathsf{HO}_2 \end{array}$


Net CO-mechanism: $CO + 2O_2 \rightarrow CO_2 + O_3$

(Source: IPCC AR6)

Overview of satellite observation


- We call satellite "platform"
 Altitude, orbit
- Sensors: active & passive
- Japanese satellites: many
 - Specialised for GHGs:
 - GOSAT (2009-), GOSAT-2 (2018-)
 - GOSAT-GW (2024?)

Satellite Data Collection

- NOT direct observations
 - Proxy of variables (e.g., reflectance)
 - Unseen by naked-eye
- Electromagnetic spectrum
 - Absorption by molecules
- Inversion
 - From proxy to oxy

John and Plumb (2007)

• Inverse analysis (aka the retrieval)

$$y = F(x) + \varepsilon$$

- y is the observation ("effect"), x is state vector ("cause")
- F is forward model, aka the model that describes the physical system.
- We want x, but y is what we get!
- So, we use Bayes' theorem to find the "most likely" result: $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$
- The prior statistics, P(x), help us obtain better result.


• Conceptual diagram of inverse analysis

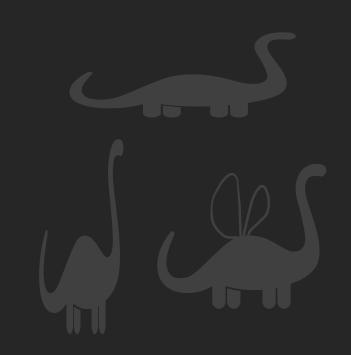
Observations

A priori knowledge

Most dragons have wings
 Green dragons have three fingers

Descriptions in Maahn et al. (2020)

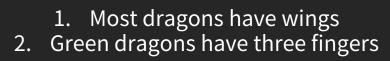
• Conceptual diagram of inverse analysis

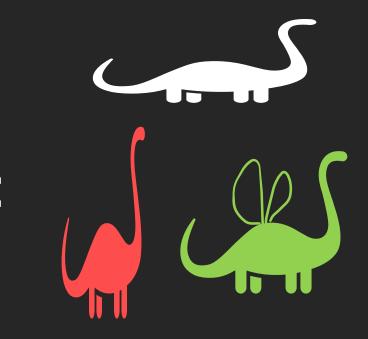

Observations

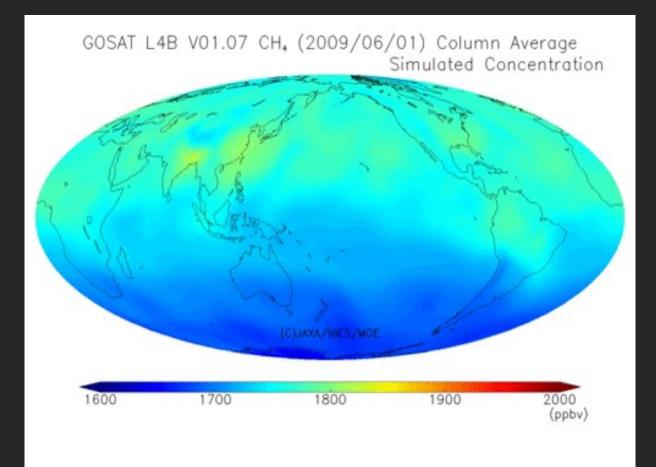
A priori knowledge

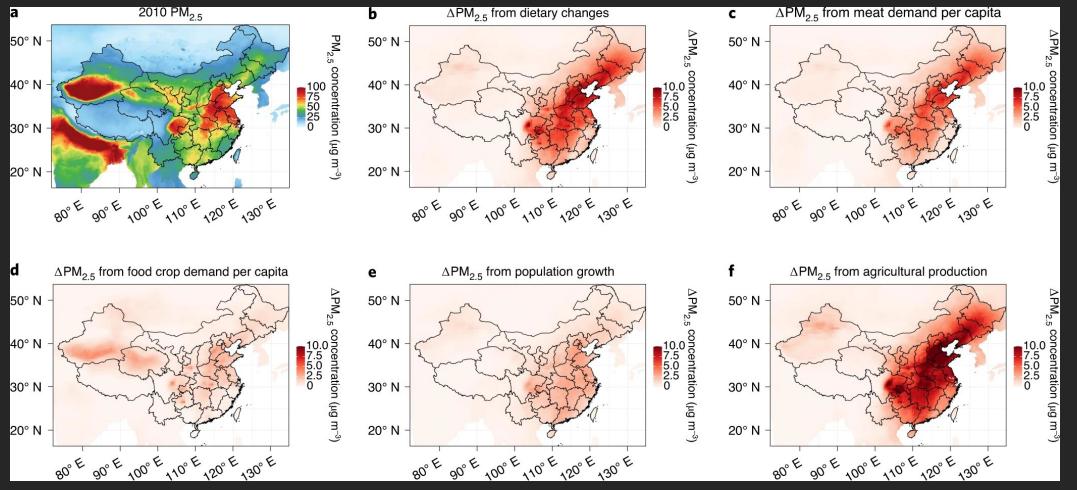
Most dragons have wings
 Green dragons have three fingers

Descriptions in Maahn et al. (2020)


• Conceptual diagram of inverse analysis


Observations


A priori knowledge


Case Study: Methane

(Source: JAXA)

Climate change: What can we do?

One simple way: choose what you eat!

(Liu et al., 2020. Nature Food)

Conclusion

- The concepts of weather and climate, basic climate system
- Greenhouse gases and short-lived climate forcers
- Satellite observations with best estimation
- Action: start from diet 🏑

Thank you

References

- Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, & et al. (2021). The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In *Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.* Cambridge, United Kingdom and New York, USA: Cambridge University Press.
- John, M. & Plumb, R. A. (2007). *Atmosphere, Ocean and Climate Dynamics: An Introductory Text*. San Diego, CA: Academic Press.
- Liu, X, Tai, A. P. K., Chen, Y., Zhang, L., Shaddick, G., Yan, X. & Lam, H. M. (2021). Dietary shifts can reduce premature deaths related to particulate matter pollution in China. *Nature Food*, 2, 997-1004. https://doi.org/10.1038/s43016-021-00430-6
- Maahn, M., Turner, D. D., Lohnert, U., Posselt, D. J., Ebell, K., Mace, G. G. & Comstock, J. M. (2020). Optimal Estimation Retrievals and Their Uncertainties: What Every Atmospheric Scientist Should Know. *Bulletin of the American Meteorological Society*, 101(9), E1512-E1523. https://doi.org/10.1175/BAMS-D-19-0027.1
- Yamaguchi, M. & Maeda, S. (2020). Increase in the Number of Tropical Cyclones Approaching Tokyo since 1980. *Journal of the Meteorological Society of Japan*, 98(4), 775-786. https://doi.org/10.2151/jmsj.2020-039